Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Urol Oncol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493072

RESUMO

BACKGROUND AND OBJECTIVE: Prostate multiparametric magnetic resonance imaging (MRI) shows high sensitivity for International Society of Urological Pathology grade group (GG) ≥2 cancers. Many artificial intelligence algorithms have shown promising results in diagnosing clinically significant prostate cancer on MRI. To assess a region-of-interest-based machine-learning algorithm aimed at characterising GG ≥2 prostate cancer on multiparametric MRI. METHODS: The lesions targeted at biopsy in the MRI-FIRST dataset were retrospectively delineated and assessed using a previously developed algorithm. The Prostate Imaging-Reporting and Data System version 2 (PI-RADSv2) score assigned prospectively before biopsy and the algorithm score calculated retrospectively in the regions of interest were compared for diagnosing GG ≥2 cancer, using the areas under the curve (AUCs), and sensitivities and specificities calculated with predefined thresholds (PIRADSv2 scores ≥3 and ≥4; algorithm scores yielding 90% sensitivity in the training database). Ten predefined biopsy strategies were assessed retrospectively. KEY FINDINGS AND LIMITATIONS: After excluding 19 patients, we analysed 232 patients imaged on 16 different scanners; 85 had GG ≥2 cancer at biopsy. At patient level, AUCs of the algorithm and PI-RADSv2 were 77% (95% confidence interval [CI]: 70-82) and 80% (CI: 74-85; p = 0.36), respectively. The algorithm's sensitivity and specificity were 86% (CI: 76-93) and 65% (CI: 54-73), respectively. PI-RADSv2 sensitivities and specificities were 95% (CI: 89-100) and 38% (CI: 26-47), and 89% (CI: 79-96) and 47% (CI: 35-57) for thresholds of ≥3 and ≥4, respectively. Using the PI-RADSv2 score to trigger a biopsy would have avoided 26-34% of biopsies while missing 5-11% of GG ≥2 cancers. Combining prostate-specific antigen density, the PI-RADSv2 and algorithm's scores would have avoided 44-47% of biopsies while missing 6-9% of GG ≥2 cancers. Limitations include the retrospective nature of the study and a lack of PI-RADS version 2.1 assessment. CONCLUSIONS AND CLINICAL IMPLICATIONS: The algorithm provided robust results in the multicentre multiscanner MRI-FIRST database and could help select patients for biopsy. PATIENT SUMMARY: An artificial intelligence-based algorithm aimed at diagnosing aggressive cancers on prostate magnetic resonance imaging showed results similar to expert human assessment in a prospectively acquired multicentre test database.

2.
Diagn Interv Imaging ; 104(5): 221-234, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36517398

RESUMO

PURPOSE: The purpose of this study was to perform a systematic review of the literature on the diagnostic performance, in independent test cohorts, of artificial intelligence (AI)-based algorithms aimed at characterizing/detecting prostate cancer on magnetic resonance imaging (MRI). MATERIALS AND METHODS: Medline, Embase and Web of Science were searched for studies published between January 2018 and September 2022, using a histological reference standard, and assessing prostate cancer characterization/detection by AI-based MRI algorithms in test cohorts composed of more than 40 patients and with at least one of the following independency criteria as compared to the training cohort: different institution, different population type, different MRI vendor, different magnetic field strength or strict temporal splitting. RESULTS: Thirty-five studies were selected. The overall risk of bias was low. However, 23 studies did not use predefined diagnostic thresholds, which may have optimistically biased the results. Test cohorts fulfilled one to three of the five independency criteria. The diagnostic performance of the algorithms used as standalones was good, challenging that of human reading. In the 12 studies with predefined diagnostic thresholds, radiomics-based computer-aided diagnosis systems (assessing regions-of-interest drawn by the radiologist) tended to provide more robust results than deep learning-based computer-aided detection systems (providing probability maps). Two of the six studies comparing unassisted and assisted reading showed significant improvement due to the algorithm, mostly by reducing false positive findings. CONCLUSION: Prostate MRI AI-based algorithms showed promising results, especially for the relatively simple task of characterizing predefined lesions. The best management of discrepancies between human reading and algorithm findings still needs to be defined.


Assuntos
Inteligência Artificial , Neoplasias da Próstata , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Neoplasias da Próstata/patologia , Diagnóstico por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...